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ABSTRACT

We introduce NNetscape Navigator (NNetnav), a method for training web agents
entirely through synthetic demonstrations. These demonstrations are collected
by first interacting with a browser to generate trajectory rollouts, which are then
retroactively labeled into instructions using a language model. Most work on
training browser agents has relied on expensive human supervision, and the limited
previous work on such interaction-first synthetic data techniques has failed to
provide effective search through the exponential space of exploration. In contrast,
NNetnav exploits the hierarchical structure of language instructions to make this
search more tractable: complex instructions are typically decomposable into sim-
pler subtasks, allowing NNetnav to automatically prune interaction episodes when
an intermediate trajectory cannot be annotated with a meaningful sub-task. We use
NNetnav demonstrations from a language model for supervised fine-tuning of a
smaller language model policy, and find improvements of 6 points on WebArena
and over 20 points on MiniWoB++, two popular environments for web-agents.
Notably, on WebArena, we observe that language model policies can be further
enhanced when fine-tuned with NNetnav demonstrations derived from the same
language model. Finally, we collect and release a dataset of over 6k NNetnav
demonstrations on WebArena, spanning a diverse and complex set of instructions.

1 INTRODUCTION

Building grounded language agents that map human language instructions to a sequence of executable
actions is a long-standing goal of artificial intelligence (Winograd, 1972), with the ultimate goal of
automating mundane web tasks like flight booking. A promising new approach for building such
agents is to use large language models to control policies in digital environments like browsers (Yao
et al., 2022; Shinn et al., 2023; Murty et al., 2024; Wang et al., 2024, among others).

Unfortunately, such grounded instruction following without any training examples is challenging
because LMs do not know about the myriad and ever changing interaction possibilities of different
websites. For instance, for a new online shopping website, a zero-shot LM agent may not know how
to make a return or change order details, without expensive test-time exploration. Even simple tasks
like selecting a flight might involve typing in airport codes or selecting from a drop-down menu, and
zero-shot agents cannot know this a-priori.

One way to provide LM web-agents with knowledge about new web interfaces is via expert demon-
strations, that can either be used for in-context learning (Yao et al., 2022) or supervised fine-tuning
(Lai et al., 2024). These demonstrations are either fully provided by human experts (Sodhi et al., 2023;
Yao et al., 2022) or consist of human-generated trajectories paired with model-generated instructions
(Lai et al., 2024). Of course, collecting human demonstrations that cover each possible use case for
every web-site is an unattractively large, never-ending task. Thus, recent work uses entirely synthetic
demonstrations by sampling a synthetic instruction, and then mapping it into a trajectory using a base
LLM agent (Patel et al., 2024; Murty et al., 2024).

Such instruction-first methods for data collection face several challenges. First, synthetic instructions
in these demonstrations are sampled from an ungrounded LM prior that generates only plausible1

1We use the term plausible for instructions that match a website’s genre or intended use. For example,
searching for clothes on a retail site or checking notifications on a social media platform. Not all plausible
instructions are feasible.
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Search for collectible items, check their details and write a  review.

Find the post about Jaime Rogozinski, and his lawsuit 
against Reddit, and ask him about his experience.

Subscribe to the r/wallstreetbets forum and navigate to world news

Exploration 
Policy 

Trajectory 
Labeler

Proxy Reward 
Function

Find driving directions from CMU to downtown Pittsburgh

Search for collectible items and navigate to ceramic rabbit ornaments 

Figure 1: NNetnav produces synthetic demonstrations for training web-agents by exploring a website
to create trajectories, and then labeling them into instructions. Long exploration in NNetnav is made
efficient using a pruning heuristic inspired by the hierarchical structure of complex instructions. At
fixed intervals during exploration, the labeling function infers an instruction for the trajectory so far,
and if the resulting (instruction, trajectory) pair receives a low score from a reward function, the
episode is terminated (red cross). Components in NNetnav are implemented using prompts to the
same LM.

instructions without ensuring feasibility; e.g., an instruction such as Respond to the first post on
r/callofdutyfans for reddit is plausible, but not always feasible. Second, generated instructions are
limited to those that reference visible features of the website; e.g., given the landing page of a
github-like platform, no LM prior can generate instructions like Find information about Eric Bailey’s
contributions to the byteblaze project, which requires knowing about deeply embedded website-
specific entities like Eric Bailey. Finally, these methods provide no control over the complexity of
instructions, and rely entirely on the LM or bespoke prompts to generate complex instructions.

Instead of starting with a sampled instruction, we start by sampling an interaction first, and then
retroactively labeling it into an instruction that is feasible by design. At a high-level, our approach
NNetscape Navigator (NNetnav, Fig 1), uses a language model exploration policy to perform
extended interactions with an environment, and another language model trajectory labeler to annotate
trajectories with instructions2. To effectively control the exponential space of meaningful interactions,
NNetnav uses the hierarchical structure of language instructions as a pruning heuristic: for exploration
to discover a meaningfully complex task, trajectory prefixes must correspond to meaningful sub-tasks.
Thus, during an exploration episode, if a language model cannot label trajectory prefixes (at set
time-steps) with a sub-task, further exploration is automatically terminated. Imposing such a structure
over search not only enhances efficiency, but also results in complex and hierarchical instructions (See
Table 7 for examples). NNetnav prompts the same base language model for exploration, relabeling
and inferring sub-tasks, and effectively addresses all limitations of instruction-first data collection.

2We will open-source our code upon acceptance.
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Using GPT-4o-mini (Achiam et al., 2023) as our base language model, we use demonstrations
collected via NNetnav to fine-tune a smaller Llama-3-8B-Instruct (Dubey et al., 2024) based
agent on two benchmarks for web navigation, MiniWoB++ (Shi et al., 2017; Liu et al., 2018) and
WebArena (Zhou et al., 2023). Compared to the base agent, performance of the fine-tuned agent
improves from 28% to 48% on MiniWoB++, and from 1% to 7% on WebArena. Crucially, these
improvements are higher than those from a model that’s fine-tuned with an instruction-first data
collection method. Finally, we find that NNetnav can be used for self-training—fine-tuning a small
LM agent with NNetnav demonstrations from the same LM leads to an improvement of 4% points
absolute (1% to 5%) on WebArena. Further analysis reveals the benefits of retroactive labeling
beyond performance improvements: When using a model-based evaluator, similar to Pan et al. (2024),
hindsight trajectories from NNetnav have a higher mean reward than trajectories from an LLM agent
based on the same underlying language model. Finally, we collect and release NNetnav-6k, a dataset
of over 6k demonstrations covering a wide and complex range of use cases on WebArena.

2 BACKGROUND

Following instructions on web-browsers is a deterministic sequential decision making problem.
Given an instruction g, an instruction following agent interacts with the browser by issuing a
sequence of actions ⟨a1, a2, . . . , aT ⟩ where each ai ∈ A is drawn in response to an observation oi.
Executing an action causes a state transition based on some unknown but deterministic environment
dynamics, leading to a new observation oi+1. The entire episode can be summarized as a trajectory
τ := ⟨o1, a1, o2, a2, . . . oT , aT , oT+1⟩. We formalize the instruction following agent as a mapping
π(at | τ<t; g) where τ<t := ⟨o1, a1, . . . ot⟩ is the trajectory so far. In this framework, the action
space A consists of a finite set of strings, while observations are represented as either flattened DOM
trees or website accessibility trees.

LLMs as Instruction Following Agents. Recent work explores prompted large language models
(LLMs) to directly parameterize π. These methods typically work in settings with textual observations
and action spaces, and many output a reasoning string ri before predicting the action string ai.
Concretely, we formalize an LM agent (omitting prompts) as πLM(at | τ<t; g) := pLM(at, | τ<t, rt; g)
where rt ∼ pLM(r | τ<t; g) is a reasoning step drawn as a sample from the LM.

Given expert demonstrations {gi, τ i} where τ i := ⟨oi1, ri1, ai1, oi2, ri2, ai2 . . . oiT ⟩, prior work adapts
LM agents using demonstrations either as in-context examples (Yao et al., 2022; Shinn et al., 2023;
Sun et al., 2023; Kim et al., 2023, among others) or as training data for supervised fine-tuning (Furuta
et al., 2023; Lai et al., 2024; Lù et al., 2024; Patel et al., 2024). For supervised fine-tuning of πLM on
a dataset of demonstrations, we construct training instances {(gi, τ i<t), (r

i
t, a

i
t)} where rit, a

i
t serves

as the target reasoning step and action for an intermediate context (gi, τ i<t).

Data collection with instruction-first methods. Collecting human demonstrations for training web-
agents is time consuming and costly. Thus, recent work proposes methods for generating synthetic
data for web-agents using language model components (Lai et al., 2024; Furuta et al., 2023; Murty
et al., 2024). These methods start by sampling synthetic instructions from an instruction generator (a
prompted LM that takes the website landing page and a persona as input), and then use a zero-shot
LM policy to convert these instructions into trajectories. Resulting demonstrations are filtered using
either the ground truth reward function (Furuta et al., 2023), or using another language model based
reward function (Lai et al., 2024; Murty et al., 2024). Most of these methods use bigger and better
language models for collecting demonstrations, and then use this data to adapt smaller models.

3 OUR APPROACH

NNetnav (Fig 1) is an interaction-first method for constructing demonstrations: An exploration policy
interacts with a browser in a structured manner to sample long trajectories which are retroactively
labeled into instructions (§3.2). We then post-process each trajectory to add post-hoc reasoning steps
corresponding to the generated instructions, and then use this data for supervised fine-tuning (§3.3).
We provide detailed pseudo-code for the exploration and relabeling steps in NNetnav in Algorithm 1.
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Algorithm 1: Exploration and Relabeling in NNetnav within a single interaction episode
Input: πexplore,LfLM, sLM,∆LM
Function run_retroactive_labeler(τ):

δτ ← [∆LM(ot, at, ot+1) | (ot, at, ot+1) ∈ τ ];
gcurr ← LfLM(δτ );
rcurr ← sLM(icurr, δτ );
return gcurr, rcurr;

Function explore(W, Tprune):
o1 ←W.init-observation;
t← 1;
τ ← ⟨⟩;
demonstrations← [];
while t ≤ Tmax do

if t ∈ Tprune then
gcurr, rcurr ← run_retroactive_labeler(τ);
if rcurr < 1 then

break;
else

demonstrations.add((gcurr, rcurr));

at ← πexplore(ot);
ot+1 ←W.step(at);
τ.add((ot, at, ot+1));
t← t+ 1;

return demonstrations;

3.1 LM COMPONENTS

We start by describing various components in NNetnav. All of these components are implemented
by zero-shot prompting a language model, with different prompts (see Appendix A for details).

Exploration Policy. To interact with the environment, we use an exploration policy πexplore, im-
plemented using a chain-of-thought prompted language model (Wei et al., 2022). Additionally, to
simulate a diverse set of behaviors from users and improve the diversity of resulting trajectories,
we seed each episode with a string description of a plausible user persona for the given website
(Shanahan et al., 2023; Argyle et al., 2023).

Summarizing Trajectory changes. Actions issued by πexplore result in a new observation in the
environment. We summarize this change as a short string description via another module ∆LM,
implemented using a language model. In particular, for any state ot, action at and the resulting
next state ot+1, δt = ∆LM(ot, at, ot+1) produces a string-valued description of the changes in the
observation as a result of the action. For a trajectory τ , we denote the sequence of state changes as δτ

Trajectory Labeling Function. Given state changes δτ , a labeling function LfLM produces a plausi-
ble instruction ĝ = LfLM(δτ ) that the agent could have followed to produce the given interaction.

Reward Function. Given ĝ and δτ , the reward function module assigns a reward sLM(ĝ, δτ ) ∈ {0, 1},
based on how well the state changes correspond to the given instruction ĝ.

3.2 SAMPLING DEMONSTRATIONS VIA INTERACTIONS

Let tmax be the maximum episode length for each exploration rollout. At specific time-steps
{t1, t2, . . . tmax}, we run the pruning heuristic that attempts to annotate the trajectory so-far with
a sub-task annotation. If this is successful, we continue the episode, and otherwise halt to sample
another rollout. Concretely, suppose we have a partial trajectory τ<t after interacting with the environ-
ment for t time-steps. If t ∈ {t1, t2, . . . tmax}, we first obtain a retroactive sub-task ĝ = LfLM(δτ<t

).
We halt further exploration if sLM(ĝ, δτ<t) = 0. Otherwise, we add the generated (ĝ, τ<t) to our set

4
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of synthetic demonstrations, and continue exploring. Typically, each interaction episode results in
multiple demonstrations.

3.3 GENERATING POST-HOC REASONING STEPS

The exploration policy in this work is implemented using a language model that generates a reasoning
step, before choosing an action (§2). Since actions in our demonstration set are a result of exploration,
corresponding reasoning steps are not generally related to the retroactively generated instruction.
Thus, for each demonstration in our synthetic demonstration set, we post-hoc annotate every action
with a new reasoning step that directly corresponds to the generated instruction. Concretely, given
every (ĝ, oi, ai) tuple in our synthetic demonstration set, we prompt a language model to output a
suitable reasoning step for choosing action ai given the instruction ĝ and current observation oi. We
note that such a post-hoc reasoning procedure is similar to Yang et al. (2024).

4 EXPERIMENTAL SETUP

4.1 DATASETS

We fine-tune language model policies with NNetnav demonstrations on two web navigation environ-
ments, MiniWoB++ (Shi et al., 2017; Liu et al., 2018) and WebArena (Zhou et al., 2023).

1. MiniWoB++: A dataset of diverse synthetic web-interfaces with a shared action space.
Tasks on MiniWoB++ range from clicking on buttons to complex tasks like making a
booking on a website. We use a subset of 8 complex tasks from MiniWoB++ as a toy
benchmark to evaluate our method. We use the bid-based action space from BrowserGym
(Drouin et al., 2024), consisting of 12 actions, and a DOM based observation space. Due to
its synthetic nature, MiniWoB++ comes with an automatic reward function. We report the
mean reward over 20 random seeds for each task, similar to (Drouin et al., 2024).

2. WebArena: A dataset of realistic web navigation tasks over 5 websites covering domains
such as e-commerce, discussion forums, maps and software development. We use the default
action space from WebArena (typing, clicking, hovering, tab management) and the default
accessibility tree based observation space. WebArena consists of 812 Web navigation tasks
across these websites, and provides an evaluator that measures success rate (SR) in terms of
functional correctness. We report the average SR across these tasks.

4.2 MODEL SETTINGS

All inference evaluations are conducted using the same base language model, with data collection
typically performed using a larger language model unless stated otherwise. We evaluate under the
following settings:

1. Zero-Shot: A baseline zero-shot LM policy πLM, prompted using chain-of-thought prompt-
ing (Wei et al., 2022). Next, we consider various fine-tuned models.

2. SFT (Instruction-First): Supervised fine-tuning (SFT) of the base policy using data
collected via instruction-first sampling. Here, we use the same reward model for filtering
demonstrations as NNetnav, and also sample the same number of demonstrations for fair
comparison.

3. SFT (NNetnav): Supervised fine-tuning of πLM with demonstrations collected via NNetnav.

4. SFT (NNetnav + Distil.): Ablation, where we only retain instructions found via NNetnav
and re-generate trajectories by prompting the same large LM as an agent. We use this setting
to isolate performance improvements attributable to NNetnav trajectories.

4.3 IMPLEMENTATION DETAILS

All LM components for data collection in NNetnav as well as instruction-first methods are based
on GPT-4o-mini (specifically gpt-4o-mini-2024-07-18). We use Llama-3-8B-Instruct
as the inference policy πLM. For Instruction-first data collection, we sample 50 instructions per

5
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Domain Zero-Shot SFT (Instruction-First) SFT (NNetnav) SFT (NNetnav + Distil.)

MiniWoB++
book-flight 0.0 0.0 0.0 0.0
choose-date 0.0 0.0 0.0 0.0
click-checkboxes-soft 0.4 0.25 0.65 0.5
email-inbox 0.25 0.3 0.3 0.35
login-user 0.3 0.0 1.0 0.95
navigate-tree 1.0 0.95 1.0 0.95
phone-book 0.15 0.15 0.2 0.55
use-autocomplete 0.25 0.55 0.7 0.35

Avg. 0.28 0.28 0.48 0.36

WebArena
Shopping 3.8 7.7 7.4 7.4
CMS 0 4.2 4.2 4.2
Reddit 0 0 0 0
Gitlab 0 0 0 4.5
Maps 0 9.1 28.5 15.4

Avg. 1.0 4.2 7.2 6.0

Table 1: Results for MiniWoB++ and WebArena, broken down by domain, reporting mean reward for
MiniWoB++ and task success rate (SR) for WebArena. We compare the zero-shot agent with agents
fine-tuned with NNetnav and instruction-first demonstrations. Overall, fine-tuning with NNetnav
leads to the largest improvements: from 28% to 48% on MiniWoB++; from 1% to 7.2% on WebArena.

website for WebArena, and 80 instructions per interface in MiniWoB++, and prompt the instruction
generator with the landing page as well as a persona (to improve diversity). For NNetnav, we use our
exploration policy to generate 50 episodes per website for WebArena, and 80 episodes per interface
for MiniWoB++. We set Tmax to 40 for WebArena, and 20 for MiniWoB++. For both MiniWoB++
and WebArena, we apply the pruning function every 4 time-steps. We use 16 persona types per
website for WebArena, and 10 persona types per web-interface for MiniWoB++.

We use the BrowserGym framework (Drouin et al., 2024) for experiments with MiniWoB++ and
prune out the full DOM to only keep visible elements. During inference, we set the max episode
length for πLM as 30 for WebArena (following Zhou et al. (2023)), and 20 for MiniWoB++. We-
bArena requires agents to output a special stop action for outputting answers. We post-process
NNetnav demonstrations to add a stop action at the end of the trajectory using a prompted LM (See
Appendix A.2 for details).

Fine-tuning details. We fine-tune all models for 5 epochs, truncating the max sequence length to
4096, with a learning rate of 2e-5, using 4 A100 GPUs. We provide complete details of our training
setup in Appendix D. We use open-instruct (Wang et al., 2023) for fine-tuning all language models,
and set up local inference servers using vllm (Kwon et al., 2023).

5 MAIN RESULTS

Fine-tuning agents with NNetnav leads to consistent gains. We report results from all model
settings in Table 1. We find that fine-tuning the zero-shot policy πLM with synthetic demonstrations
from NNetnav leads to consistent improvements on all tasks in MiniWoB++, leading to a 20 point
improvement overall. We note an improvement of over 6 points from fine-tuning with NNetnav
demonstrations on WebArena. Importantly, gains from fine-tuning with NNetnav exceeds those from
using instruction-first methods by 12 points on MiniWoB++ and 1.2 points on WebArena.
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Domain Zero-Shot SFT (Instruction-First) SFT (NNetnav) SFT (NNetnav + Distil.)

Shopping 1.26 1.37 2.22 2.33
CMS 1.21 1.29 1.92 1.87
Reddit 1.08 1.31 2.0 1.54
Gitlab 1.14 1.09 1.86 1.5
Maps 1.21 1.36 2.29 1.86

WebArena (Avg.) 1.19 1.28 2.05 1.87

Table 2: Model-based evaluation on WebArena, broken down by domain. For each test instruction
and predicted trajectory, we prompt a GPT-4o based reward model to output a graded reward from 1
to 5 based on a manual rubric. We find that fine-tuning with NNetnav outperforms all other settings.

Domain Zero-Shot Self-Train (NNetnav)

Shopping 3.8 15.4
CMS 0.0 0.0
Reddit 0.0 0.0
Gitlab 0.0 0.0
Maps 0.0 7.1

Avg. 1.0 5.3

Table 3: We generate NNetnav demonstrations
using Llama-3-8B-Instruct, which we use for
supervised fine-tuning of an agent based on the
same LM, and find significant improvements on
WebArena from 1% to 5.3%.

Domain Zero-Shot Self-Train (NNetnav)

in-domain
Shopping 1.26 1.37
CMS 1.21 1.29
Maps 1.21 1.36

out-of-domain
Reddit 1.08 1.31
Gitlab 1.14 1.09

Table 4: We fine-tune πLM with NNetnav
demonstrations from 3 websites, and evaluate
in-domain and out-of-domain generalization
with the model based evaluator that outputs a
score from 1 to 5. While improvements are
higher in-domain, we still find improvements
on out-of-domain data.

Fine-grained evaluation on WebArena with LLM reward. We observe highly non-uniform
improvements on WebArena with no improvements on Reddit and Gitlab in particular. We hypothesize
that this is due to the coarse nature of WebArena’s success rate (SR) evaluation, since it does not
provide partial credit. Thus, inspired by Pan et al. (2024), we develop a model based evaluation
using the largest publicly available GPT-4o (specifically gpt-4o-2024-08-06) model to assign a
graded reward from 1 to 5 to model outputs for each test instruction (see Appendix B for full prompt).
We present results from model-based evaluation in Table 2. At the level of model settings we observe
the same trend: Zero-Shot < SFT (Instruction-First) < SFT (NNetnav + Distil.) < SFT (NNetnav).
However since this evaluation is more graded, we find consistent improvements from using NNetnav
demonstrations across all websites, including Reddit and Gitlab, where improvements of 0.92 points
and 0.72 points are observed, respectively. As expected, performance rankings sometimes changes
with such graded evaluation e.g. on CMS, all fine-tuned models are tied in terms of SR (Table 1), but
not in terms of graded reward (Table 2). Overall, we believe WebArena evaluations should incorporate
both overall SR and fine-grained model based evaluation for a more comprehensive understanding of
system performance.

The Benefit of Hindsight. We find that SFT (NNetnav) outperforms SFT (NNetnav + Distil.) on
both MiniWoB++ and WebArena. Trajectories in NNetnav are obtained via a hindsight procedure:
the model acts first, and the instruction is inferred afterward. In constrast, for NNetnav + Distil., the
instruction is provided first, and the trajectory is sampled later. To understand if hindsight trajectories
offer an advantange, we use the model based evaluator to measure training data quality for these
settings. Specifically, we use the evaluator to assign reward to trajectories in NNetnav and NNetnav
+ Distil. for WebArena, and find a win-rate of 64% for NNetnav trajectories with a mean reward
of 3.52 compared to a reward of 2.44 for NNetnav + Distil. We conclude that gains from NNetnav
extend beyond just providing more complex instructions.
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Figure 2: Horizontal lines indicate
fraction of episodes terminating at
corresponding y-axis exploration
step. The red shaded area repre-
sents prevented actions, showing
significant savings on both datasets.

Computational savings from NNetnav pruning. We visual-
ize overall improvements in exploration efficiency in Fig 2.
Each horizontal line depicts the fraction of interaction episodes
that terminate at a specific time-step (indicated by the y-axis),
with the red shaded area depicting additional actions that were
prevented from early pruning. We find clear evidence of com-
putational savings. In particular, over 60% of all exploration
episodes were pruned after 16 actions for WebArena. For Mini-
WoB++, 65% of episodes were pruned after just 4 actions in
MiniWoB++, which we identify as interactions where these first
actions resulted in execution failures that our pruning heuristic
successfully identified.

Self-training with NNetnav. Can NNetnav demonstrations
from an LM be used for improving the same LM agent?
To answer this, we collect another set of NNetnav demon-
strations on WebArena, using LM components based on
Llama-3-8B-Instruct. Given the limitations of this smaller
model, we anticipate fewer meaningful interactions. To com-
pensate, we increase the number of episodes to 200 episodes per
website, resulting in 302 demonstrations which we use for fine-
tuning the same Llama-3-8B-Instruct agent. From results
in Table 3, we find improvements of 4.3 points on WebArena.

Cross-website generalization. Finally, we use NNetnav to
conduct a small study on cross-website generalization in web-
agents. Concretely, we perform supervised fine-tuning of πLM on NNetnav demonstrations from
Shopping, Maps and CMS, and evaluate generalization to Reddit and Gitlab. Here, we choose to
report only model-based evaluation since success rates are 0 for these domains. From results in
Table 4, we note that average reward improves by 0.06 on held out websites, and by 0.13 on in-domain
websites, suggesting some potential for cross-website transfer in LLM web-agents.
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Agent #Params WebArena SR Open LLM? Zero-shot?

Llama-3-8B-Instruct 8B 1.0 ✓ ✓

Patel et al. (2024) 72B 9.4 ✓ ✗

Lai et al. (2024) 7B 2.5 ✓ ✓

Ou et al. (2024) 7B 6.3 ✓ ✓

Llama-3-8B-Instruct-NNetnav 8B 10.3 ✓ ✓

Drouin et al. (2024) Unknown (GPT-4) 23.5 ✗ ✓

Wang et al. (2024) Unknown (GPT-4) 35.5 ✗ ✗

Table 5: We present WebArena task success rate of various prior approaches, along with key details
such as model size, the use of open LLMs, and whether methods are fully zero-shot. For Lai et al.
(2024), we report results from the setting that does not use human supervision. Notably, our approach,
Llama-3-8B-Instruct-NNetnav, achieves a 4% improvement over the previous state-of-the-art
among zero-shot agents that use open LLMs.

6 NNetnav-6K

To facilitate further research on fine-tuned browser agents, we release the first large-scale dataset
of over 6000 demonstrations from WebArena. Here, we use Llama-3-70B-Instruct3 as the
underlying LM for various components in NNetnav, and sample 3000 interactions each, with Tmax
set to 40 as before. For each trajectory in these demonstrations, we release both accessibility tree
strings as well as browser screenshots at each time-step, to support future work on text-based as well
as multi-modal web agents.

To analyze diversity in these instructions, we follow methodology from Wang et al. (2022). Specifi-
cally, we use Stanza (Qi et al., 2020) to parse each instruction, identifying the verb closest to the root
and its direct object. Fig 3 presents the top 15 verbs and their corresponding object nouns. Overall, we
observe a diverse range of intents in the NNetnav-6k dataset. Additionally, we plot the distribution of
instruction as well as trajectory lengths in Fig 4, revealing further diversity in these aspects. Table 7
provides example demonstrations from NNetnav-6k, showcasing instructions from different websites.
We find a number of complex, hierarchical instructions such as Edit the issue “Link to WCAG 2.1
instead of ... that refer to specific features of the website (r/art, Swings and roundabouts), and are
plausible by design. Many of these instructions share lots of common structure (e.g. Get walking
directions from ... and Get cycling directions from ...), and incorporating such structure into agents
could be a promising direction for future work.

Fine-tuning agents with NNetnav-6k demonstrations. To demonstrate the effectiveness of
NNetnav-6k in improving instruction-following in LLM web-agents, we perform supervised finetun-
ing of the Llama-3-8B-Instruct agent on NNetnav-6k demonstrations. As described in Section
2, each demonstration expands into multiple training instances, resulting in a total of over 77,000
training examples. The results, presented in Table 5, show that our approach achieves a WebArena
Success Rate (SR) of 10.3%. This marks a significant improvement over previously reported results
for sub-10B models trained on synthetic datasets. To the best of our knowledge, our model sets a new
state-of-the-art among agents that do not use closed-source models like GPT-4, human-annotated
demonstrations, or prior knowledge of WebArena test instructions.

7 RELATED WORK

Language Conditioned Digital Assistants. Mapping instructions to action sequences in digital
environments has been a long-standing goal in natural language understanding (Allen et al., 2007;
Branavan et al., 2009). Most pre-LLM approaches for this rely on expert demonstrations for behavioral
cloning (Chen & Mooney, 2011; Humphreys et al., 2022), along with an appropriately shaped reward

3We opted to use a locally hosted Llama-3-70B-Instruct model for collecting the larger-scale NNetnav-6k
dataset, as it produced demonstrations of comparable quality to GPT-4o-mini while offering a more permissive
license for downstream applications.
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function (Branavan et al., 2009; Liu et al., 2018; Misra et al., 2017, among others). Here, learning is
driven purely by synthetic demonstrations derived via (language model) exploration of websites.

Linguistic Priors for Exploration. Several prior works have used natural language priors to inform
exploration for sequential decision making. Harrison et al. (2017) use a trained model of associations
between language and state/action pairs to guide exploration during policy learning. Mu et al.
(2022) use language annotations of states to train a goal generator module that provides intrinsic
rewards for achieving generated goals. Similarly, Du et al. (2023) constrain exploration towards goals
generated by a pre-trained LLM at each intermediate state of an agent. In constrast, NNetnav biases
exploration through two news ways of using language priors. First, we use natural language as a way
to filter meaningful interactions. Second, we use it as a pruning heuristic to navigate the potentially
exponential search space of these interactions.

Training Data for LLM Web-Agents. LLMs have shown strong performance over a wide range
of language understanding tasks, and are increasingly being used to interpret language in grounded
contexts such as browsers (Yao et al., 2022; Lai et al., 2024; Wang et al., 2024; Patel et al., 2024;
Lù et al., 2024, among others). Many of these approaches rely on human demonstrations, either
for in-context learning (Yao et al., 2022; Sodhi et al., 2023; Kim et al., 2023) or for finetuning (Lù
et al., 2024). However, because human demonstrations are costly, recent work trains LLM agents
through synthetic demonstrations generated using instruction-first methods (Lai et al., 2024; Patel
et al., 2024). One exception is Murty et al. (2024), which introduces an interaction-first method
for generating synthetic demonstrations for in-context learning. Despite its novelty, their approach
does not scale well to real websites due to the lack of a mechanism for effective exploration in
environments with many possible interactions. In contrast, NNetnav also follows an interaction-first
approach but improves efficiency by leveraging linguistically motivated pruning to navigate the space
of meaningful interactions.

8 CONCLUSION

We propose NNetnav, a method for training web-agents with synthetic demonstrations. NNetnav
flips the standard paradigm of synthetic data generation by first interacting with a website to generate
trajectories and then relabeling trajectories into instructions. Real websites have a prohibitively large
set of possible interactions; NNetnav searches over this space efficiently using a pruning function
inspired by the hierarchical structure of language instructions: any complex instruction consists of
language describable sub-tasks and so, if during an interaction a relabeling module cannot infer a
meaningful sub-task for the trajectory-so-far, further exploration is pruned. We apply NNetnav to
collect demonstrations on MiniWoB++ and WebArena, which are then used to fine-tune a zero-shot
base LM agent. This yields significant improvements over the zero-shot baseline and outperforms
standard synthetic data generation methods. In addition, we show that NNetnav enables self-training,
as demonstrations collected using a base language model can improve the performance of an agent
built on the same model. We find that NNetnav significantly enhances exploration efficiency due to
the pruning heuristic and generates complex, realistic instructions. Lastly, we release NNetnav-6k,
the largest dataset of demonstrations on WebArena to date, with over 6000 demonstrations covering
broad range of intents and phenomena in WebArena.

REPRODUCTIBILITY STATEMENT

Prompts for every LM component is provided in Appendix A, along with other details like agent
action spaces. Details for model-based evaluation on WebArena are provided in Appendix B. We
provide full details for post-processing demonstrations for SFT in Appendix C, and additional
hyperparameters for supervised fine-tuning in Appendix D. All code and data will be available here.
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A PROMPTS FOR LM COMPONENTS

A.1 MINIWOB++

We start by presenting all prompts for MiniWoB++. The action space for MiniWob++ is:

Listing 1: Action Space
noop(wait_ms: float = 1000)

Examples:
noop()
noop(500)

scroll(delta_x: float, delta_y: float)
Examples:

scroll(0, 200)
scroll(-50.2, -100.5)

fill(bid: str, value: str)
Examples:

fill(’237’, ’example value’)
fill(’45’, ’multi-line\nexample’)
fill(’a12’, ’example with "quotes"’)

select_option(bid: str, options: str | list[str])
Examples:

select_option(’a48’, ’blue’)
select_option(’c48’, [’red’, ’green’, ’blue’])

click(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’, modifiers: list[typing
.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] = [])

Examples:
click(’a51’)
click(’b22’, button=’right’)
click(’48’, button=’middle’, modifiers=[’Shift’])

dblclick(bid: str, button: Literal[’left’, ’middle’, ’right’] = ’left’, modifiers: list[
typing.Literal[’Alt’, ’Control’, ’Meta’, ’Shift’]] = [])

Examples:
dblclick(’12’)
dblclick(’ca42’, button=’right’)
dblclick(’178’, button=’middle’, modifiers=[’Shift’])

hover(bid: str)
Examples:

hover(’b8’)
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press(bid: str, key_comb: str)
Examples:

press(’88’, ’Backspace’)
press(’a26’, ’Control+a’)
press(’a61’, ’Meta+Shift+t’)

focus(bid: str)
Examples:

focus(’b455’)

clear(bid: str)
Examples:

clear(’996’)

drag_and_drop(from_bid: str, to_bid: str)
Examples:

drag_and_drop(’56’, ’498’)

upload_file(bid: str, file: str | list[str])
Examples:

upload_file(’572’, ’my_receipt.pdf’)
upload_file(’63’, [’/home/bob/Documents/image.jpg’, ’/home/bob/Documents/file.zip
’])

Only a single action can be provided at once. Example:
fill(’a12’, ’example with "quotes"’)

If you are done exploring, you can issue the stop action: ‘‘‘stop‘‘‘

Here is an example with chain of thought of a valid action when clicking on a button: "In
order to accomplish my goal I need to click on the button with bid 12. In summary, the next
action I will perform is ‘‘‘click("12")‘‘‘

This is then directly used for various prompts as {action_str}.

Listing 2: Prompt for the Exploration Policy πexplore

You are an autonomous intelligent agent tasked with performing tasks on a web interface.
Your objective is to simulate a task that a person might request, by interacting with the
interface through the use of specific actions.

Here’s the information you’ll have:
DOM Representation: This is the current webpage’s Document Object Model (DOM)
representation as a string.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.
Person Description: The description of a specific kind of person whose task you are
supposed to simulate.

You can perform the following actions: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation.
2. You should only issue one action at a time.
3. You should reason step by step and then issue the next action.
4. Make sure to wrap your action in a code block using triple backticks.
5. The DOM / Accessibility Tree only shows the visible part of the webpage. If you need to
interact with elements that are not visible, you can scroll to them using the scroll action
. Often submit buttons are not visible and are at the bottom of the page. To scroll to the
bottom of the page, use the scroll action with a large value for the y coordinate.
6. To generate an interesting task, make sure you issue atleast 4 actions before stopping.
More interesting tasks typically involve more interactions with the browser.
7. You can issue atmost 20 actions before stopping, but feel free to output the stop action
early if you want to stop exploring. Don’t generate anything after stop.

Listing 3: Prompt for ∆LM

You are given the output of an action taken by an autonomous intelligent agent navigating a
web-interface to fulfill a task given by a user. Your objective is to produce a

description of the changes made to the state of the browser.
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Here’s the information you’ll have:
Initial state of the browser as a DOM representation: This is the webpage’s Document Object
Model (DOM) representation as a string.

Final state of the browser as a DOM representation: This is the DOM representation after
the agent took the action.

The action taken by the agent: This is the action taken by the agent to change the state of
the browser.

The actions the agent can take come from the following categories: {action_str}

To be successful, it is very important to follow the following rules:
1. Explictly think about the various features on the website and how the interaction with
the website changed these features
2. Provide the description of changes in one or two sentences.
3. Strictly follow the format "State change: <your-answer>" for your output

Listing 4: Prompt for the Trajectory Labeling function LfLM

Given a task from a user, an autonomous intelligent agent carries out a sequence of actions
on a web-interface.

The actions the agent can take fall under the following categories: {action_str}

Your objective is to guess the instruction the user gave, given the following information:
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

To be successful, it is very important to follow the following rules:
1. Explictly think about how the trajectory is a valid way to achieve the instruction,
before outputing the instruction.
2. Start by thinking by outputing Thought: <your-reasoning>.
3. End your answer by strictly following the format "Instruction: <your-answer>" for your
output.

Listing 5: Prompt for the reward function sLM

An autonomous intelligent agent navigating a web browser is given an instruction by a user.
Your objective is to give a score to the agent based on how well it completed its task.

Your score must be on the scale of 1 to 5. Give a score of 5 only when there are no errors.
To do this task you are provided with the following information:

Instruction: This is the natural language instruction given to the agent.
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

To be successful, it is very important to follow the following rules:
1. Explictly think about what is needed to follow the instruction correctly on the website
and if the trajectory reflects these steps.
2 Give a score of 4 if there are very minor errors, or if the task was more than 70%
completed. Give a score of 3 (or below) if the model made very little progress towards the
given instruction or if there are major errors.
3. Start by thinking by outputing Thought: <your-reasoning>.
4. End your answer by strictly following the format "Reward: <your-answer>" for your output

Listing 6: Prompt for the base LLM agent πLM

You are an autonomous intelligent agent tasked with performing tasks on a web interface.
These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
DOM Representation: This is the current webpage’s Document Object Model (DOM)
representation as a string.
The user’s objective: This is the task you’re trying to complete.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

You can perform the following actions: {action_str}

To be successful, it is very important to follow the following rules:
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1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Make sure to wrap your action in a code block using triple backticks.
5. The DOM / Accessibility Tree only shows the visible part of the webpage. If you need to
interact with elements that are not visible, you can scroll to them using the scroll action
. Often submit buttons are not visible and are at the bottom of the page. To scroll to the
bottom of the page, use the scroll action with a large value for the y coordinate.
6. Issue stop action when you think you have achieved the objective. Don’t generate
anything after stop.

Listing 7: Prompt for adding reasoning steps retroactively to filtered trajectories
You are an autonomous intelligent agent that carries out a sequence of actions on a web-
interface, given an instruction from a user. The actions you can take fall under the
following categories: {action_str}

You are given the user instruction, an intermediate state of the web-page (in the form of a
DOM string), and the action you took for that intermediate state. Your objective is to

output your reasoning for choosing that specific action. In summary, you are given the
following
Instruction: This is the instruction given by the user.
Intermediate State: This is the state of the web-page at some time-step t.
Action: This is the action taken by the agent at time-step t.

Here are some example reasoning outputs for some random tasks:

Instruction: select_option(’checkbox_group’, [’appetizing’, ’bunnies’, ’weird’, ’dull’])
Intermediate State: {state}
Action: click(’21’)

Output: Let’s think step by step. The user instruction is to select multiple options from a
checkbox group, specifically ’appetizing’, ’bunnies’, ’weird’, and ’dull’. In the current

intermediate state, I can see the checkboxes for these options, and they are represented by
input elements with specific bid attributes. The action I took was to click on the

checkbox corresponding to ’appetizing’, which is represented by the input with bid ’18’.
Now I will check the ’bunnies’ checkbox, moving closer to fulfilling the user’s request to
select the specified options. In summary, the next action I will perform is ‘‘‘click(’21’)
‘‘‘

Instruction: click(’Macie’)
Intermediate State: {state}
Action: click(’21’)

Output: Let’s think step by step. The user instruction is to click on ’Macie’, which is
represented by the HTML element with bid ’21’. In the intermediate state of the web page, ’
Macie’ is identified as a folder that is expandable and clickable. By executing the click
action on this element, I will open the folder associated with ’Macie’, which aligns with
the user’s intention to interact with it. In summary, the next action I will perform is ‘‘‘
click(’21’)‘‘‘

To be successful, it is very important to follow the following rules:
1. Explictly think about how executing the given action will change the web-page in a way
that gets the agent closer to achieving the user instruction
2. You should strictly follow the format "Output: Let’s think step by step. <agent
reasoning>. In summary, the next action I will perform is ‘‘‘[action]‘‘‘ ". Here make sure
to replace [action] with the provided action.

A.2 WEBARENA

Next, we present all prompts for WebArena. The action space for WebArena is:

Listing 8: Action Space
Page Operation Actions:
‘click [id]‘: This action clicks on an element with a specific id on the webpage.
‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field
with id. By default, the "Enter" key is pressed after typing unless press_enter_after is
set to 0.
‘hover [id]‘: Hover over an element with id.
‘press [key_comb]‘: Simulates the pressing of a key combination on the keyboard (e.g.,
Ctrl+v).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

‘scroll [direction=down|up]‘: Scroll the page up or down.

Tab Management Actions:
‘new_tab‘: Open a new, empty browser tab.
‘tab_focus [tab_index]‘: Switch the browser’s focus to a specific tab using its index.
‘close_tab‘: Close the currently active tab.

URL Navigation Actions:
‘goto [url]‘: Navigate to a specific URL.
‘go_back‘: Navigate to the previously viewed page.
‘go_forward‘: Navigate to the next page (if a previous ’go_back’ action was performed).

Completion Action:
‘stop ["done"]‘: Issue this action when you are done.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has
a list of websites you can visit.

This is then directly used for various prompts as {action_str}.

Listing 9: Prompt for the Exploration Policy πexplore

You are an autonomous intelligent agent tasked with navigating a web browser. Your
objective is to simulate a task that a person might perform, by interacting with the
browser through the use of specific actions.

Here’s the information you’ll have:

The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your
progress.

Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.
Person Description: The description of a specific kind of person whose task you are
supposed to simulate.

The actions you can perform fall into several categories: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start by reasoning out the current situation.
End with "In summary, the next action I will perform is" phrase, followed by action inside
‘‘‘‘‘‘. For example, "Let’s think step-by-step. Given the current state, I need to click

on the like button which has id 1234. In summary, the next action I will perform is ‘‘‘
click [1234]‘‘‘".
5. To generate an interesting task, make sure you issue atleast 4 actions before stopping.
More interesting tasks typically involve more interactions with the browser.
6. You can issue atmost 40 actions before stopping, but feel free to output the stop action
early if you want to stop exploring. Don’t generate anything after stop.

Here are some example outputs for some random tasks:
1. Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which
is the product identified in the objective. Its price is $279.49. I think I have achieved

the objective. I will issue the stop action with the answer. In summary, the next action I
will perform is ‘‘‘stop [$279.49]‘‘‘
2. Let’s think step-by-step. This page has a search box whose ID is [164]. According to the
nominatim rule of openstreetmap, I can search for the restaurants near a location by "

restaurants near". I can submit my typing by pressing the Enter afterwards. In summary, the
next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1]‘‘

Listing 10: Prompt for ∆LM

You are given the output of an action taken by an autonomous intelligent agent navigating a
web browser. Your objective is to produce a description of the changes made to the state

of the browser.
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Here’s the information you’ll have:

Initial state of the browser as an accessibility tree: This is a simplified representation
of the webpage, providing key information.
Final state of the browser: This is the accessibility tree representation after the agent
took the action

The action taken by the web agent: The agent can take actions that fall under the following
categories: {action_str}

To be successful, it is very important to follow the following rules:
1. Explictly think about the various features on the website and how the interaction with
the website changed these features
2. Provide the description of changes in one or two sentences.
3. Strictly follow the format "State change: <your-answer>" for your output

Listing 11: Prompt for the Trajectory Labeling function LfLM

Given an instruction from a user, an autonomous intelligent agent carries out a sequence of
actions on a web-browser. The actions the agent can take fall under the following

categories: {action_str}

Your objective is to guess the instruction the user gave, given the following information:
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

Here are some examples of user instructions:
1. Get the distance from SF airport to Palo Alto.
2. Find out the price of Apple airpods
3. Add 5 items to cart
4. Make a comment on the first post in the r/gaming subreddit.

To be successful, it is very important to follow the following rules:
1. Explictly think about how the trajectory is a valid way to achieve the instruction,
before outputing the instruction.
2. Start by thinking by outputing Thought: <your-reasoning>.
3. End your answer by strictly following the format "Instruction: <your-answer>" for your
output.

Listing 12: Prompt for the reward function sLM

An autonomous intelligent agent navigating a web browser is given an instruction by a user.
Your objective is to give a score to the agent based on how well it completed its task.

Your score must be on the scale of 1 to 5. Give a score of 5 only when there are no errors.
To do this task you are provided with the following information:

Instruction: This is the natural language instruction given to the agent.
Trajectory: This is a sequence of natural language descriptions of the agent’s interaction
with the web-browser.

To be successful, it is very important to follow the following rules:
1. Explictly think about what is needed to follow the instruction correctly on the website
and if the trajectory reflects these steps.
2 Give a score of 4 if there are minor errors, or if the task was more than 70% completed.
Give a score of 3 (or below) if the model made very little progress towards the given
instruction.
3. Start by thinking by outputing Thought: <your-reasoning>.
4. End your answer by strictly following the format "Reward: <your-answer>" for your output

Listing 13: Prompt for the base LLM agent πLM

You are an autonomous intelligent agent tasked with navigating a web browser. You will be
given web-based tasks. These tasks will be accomplished through the use of specific actions
you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page’s accessibility tree: This is a simplified representation of the
webpage, providing key information.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
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The previous actions: These are all the action you have performed. It may be helpful to
track your progress.

The actions you can perform fall into several categories: {action_str}

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. You are strictly forbidden from issuing a goto action to a URL that is not on the
homepage.
5. Generate the action in the correct format. Start by reasoning about the current
situation. End with "In summary, the next action I will perform is" phrase, followed by
action inside ‘‘‘‘‘‘. For example, "Let’s think step-by-step. Given the current state, I
need to click on the like button which has id 1234. In summary, the next action I will
perform is ‘‘‘click [1234]‘‘‘".
6. Issue stop action when you think you have achieved the objective. Don’t generate
anything after stop.

Here are some example outputs for some random tasks:
1. Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which
is the product identified in the objective. Its price is $279.49. I think I have achieved

the objective. I will issue the stop action with the answer. In summary, the next action I
will perform is ‘‘‘stop [$279.49]‘‘‘
2. Let’s think step-by-step. This page has a search box whose ID is [164]. According to the
nominatim rule of openstreetmap, I can search for the restaurants near a location by "

restaurants near". I can submit my typing by pressing the Enter afterwards. In summary, the
next action I will perform is ‘‘‘type [164] [restaurants near CMU] [1]‘‘‘

Listing 14: Prompt for adding reasoning steps retroactively to filtered trajectories
You are an autonomous intelligent agent that carries out a sequence of actions on a web-
interface, given an instruction from a user.

The actions you can take fall under the following categories: {action_str}

You are given the user instruction, an intermediate state of the web-page (in the form of
an accessibility tree), and the action you took for that intermediate state. Your objective
is to output your reasoning for choosing that specific action. In summary, you are given

the following
Instruction: This is the instruction given by the user.
Intermediate State: This is the state of the web-page at some time-step t.
Action: This is the action taken by the agent at time-step t.

Here are some example reasoning outputs for some random tasks

Instruction: Find directions from CMU to Downtown Pittsburgh
Intermediate State: {state}
Action: click [482]

Output: Let’s think step-by-step. Since my previous attempt to click the ’Go’ button failed
, I will try clicking the ’Find directions between two points’ link instead. This could
help in planning public transportation routes effectively. In summary, the next action I
will perform is ‘‘‘click [482]‘‘‘

Instruction: Navigate to the ’Orders’ section and create a new customer for order
processing.
Intermediate State: {state}
Action: click [1583]

Output: Let’s think step-by-step. Currently, I am in the Orders section of the Magento
Admin panel. I see a button labeled ’Create New Order,’ which is likely the next step for
creating orders. In summary, the next action I will perform is ‘‘‘click [1583]‘‘‘ to create
a new order.

To be successful, it is very important to follow the following rules:
1. Explictly think about how executing the given action will change the web-page in a way
that gets the agent closer to achieving the user instruction
2. Make sure to wrap the action inside triple backticks (such as ‘‘‘click [1234]‘‘‘, ‘‘‘
type [12] [Hotels near CMU]‘‘‘) as shown in the examples and strictly follow the format "
Output: Let’s think step by step. <agent reasoning>. In summary, the next action I will
perform is ‘‘‘[action]‘‘‘ ". Here make sure to replace [action] with the provided action.

Listing 15: Prompt for appending the special [stop] action in WebArena
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Given an instruction from a user, an autonomous intelligent agent carries out a sequence of
actions on a web-browser. The actions the agent can take fall under the following

categories (we also provide the descriptions of each action): {action_str}

You are given the user instruction, and the final webpage after the agent finished its task
. Unfortunately, we forgot to collect the final stop action from the agent. Your objective
is to guess the agent’s stop action. To do this, you are given the following
Instruction: This is the instruction given by the user.
Final State: This is the final state of the web-page after the agent executed its actions
on the browser.

Here are some examples of valid outputs:
1. Let’s think step-by-step. The task requires me to find the person with the most number
of upvotes. I see the answer to that is Alice Oh. Therefore I will stop now. In summary, my
next action will be ‘‘‘stop [Alice Oh]‘‘‘.

2. Let’s think step-by-step. The task required setting the price of Sprite to 25$ which I
have already done. Thus I will stop now. In summary, my next action will be ‘‘‘stop [N/A
]‘‘‘.
3. Let’s think step-by-step. I was supposed to find the distance from Brad’s house to the
coffee shop. I see this info on the map as 0.3 miles. Thus I will issue the stop action. In
summary, my next action will be ‘‘‘stop [0.3 miles]‘‘‘

To be successful, it is very important to follow the following rules:
1. Explictly think about what kind of a stop action was needed. For instance, if the user
requests information (e.g. Search for airports near CMU or Find developers with more than 5
merge requests), then the stop action should have the answer based on the final web-page (

e.g. ‘‘‘stop [Pittsburgh Airport]‘‘‘ or ‘‘‘stop [Don Knuth, Alan Turing]‘‘‘). Otherwise,
the stop action should be without any arguments (e.g. ‘‘‘stop‘‘‘).
2. Your output should include reasoning steps. Also make sure to wrap the stop action in
triple backticks for e.g. ‘‘‘stop [<your answer>]‘‘‘. Overall, follow the following format
for your output: "Let’s think step by step. <your reasoning>. In summary, my next action
should be ‘‘‘stop [<your answer>]‘‘‘.

B MODEL-BASED EVALUATION: DETAILS

For each (g, τ) pair we first use ∆LM to compute the sequence of changes δτ , which is then passed
into the reward module along with g. We implement the reward module as a prompted LM, using the
largest GPT-4o (specifically gpt-4o-2024-08-06) with the following prompt:

Listing 16: Prompt for the model-based evaluator
An autonomous intelligent agent navigating a web browser is given an instruction by a user.
Your objective is to give a score to the agent based on how well it completed its task.

Your score must be on the scale of 1 to 5. Give a score of 5 only when there are no errors.
To do this task you are provided with the following information:

Instruction: Natural language instruction given to the agent.
Trajectory: Sequence of language descriptions of the agent’s interaction with the browser.

Here are some guidelines for scoring:
1. Give a score of 5 if there are no errors.
2. Give a score of 4 if the task was almost correctly done (i.e. for form filling, most of
the fields are filled or for a search task, a query was correctly typed, and the agent
navigated to the right links).
3. Give a score of 3 if the task was only partially completed (i.e for form filling, less
than half the fields are filled out) and if there are other minor execution errors.
4. Give a score of 1 or 2 if there are major execution errors, or the task was hardly
completed, or if the agent did something completely unrelated.

To be successful, it is very important to follow the following rules:
1. Explictly think about what is needed to follow the instruction correctly on the website
and if the trajectory reflects these steps.
2. Start by thinking by outputing Thought: <your-reasoning>.
3. End your answer by strictly following the format "Reward: <your-answer>" for your output

C PROCESSING DEMONSTRATIONS FOR SFT

As mentioned in §2, for supervised finetuning each demonstration is converted into multiple training
instances. We perform this conversion differently based on input features of πLM.
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Dataset NNetnav NNetnav (self-train) Instruction-First

MiniWoB++ 2288 - 8559
WebArena 9737 2204 1681

Table 6: Number of instances for supervised training experiments of §5 under various settings.
Between NNetnav and Instruction-First, we only control for the number of episodes for a fair
comparison, which results in different number of training instances.

MiniWoB++. For MiniWoB++, πLM conditions on the current observation ot, the goal g and the
previous action at−1 (see prompt in §A.1). Thus, we pre-process each (g, τ) demonstration into
inputs (g, ot, at−1) with the corresponding reasoning step and action (rt, at) as the target output.

WebArena. For WebArena, πLM conditions on the current observation ot, the goal g and all previous
actions {a1, a2, . . . , at−1} (see prompt in §A.2). Thus, we pre-process each (g, τ) demonstration
into inputs (g, ot, {a<t}) with (rt, at) as the target output.

We report number of training instances from NNetnav and instruction-first generation for both
environments in Table 6.

D TRAINING DETAILS

Additional Hyperparameters. For all Llama-3-8B-Instruct finetuning experiments, we set the
batch size for training as 128 × 4096, train for 5 epochs, with a learning rate of 2e-5 that linearly
warms up from 0 over 3% of total training steps. We use 4 A100 GPUs with 80GB GPU memory,
and additionally use DeepSpeed ZeRO-3 (Rajbhandari et al., 2020) to speed up training and manage
memory.

E NNetnav-6K EXAMPLES
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Shopping

Find a kitchen utensil organizer.
Find a kitchen utensil organizer within a certain budget.
Write a review for the product “Citric Acid 2 Pounds 100% Pure Organic Food Grade”.
Find the price of kitchen gadgets that can be used for dining and entertaining, and add them to the cart.
Browse for women’s clothing items, specifically jumpsuits, and add some to cart.

CMS

Change the stock status of the Sprite Stasis Ball 65 cm to In Stock.
Create a new product in the Magento Admin panel with the name ’New Fashionable Watch’, SKU ’New
Fashionable WatchFW101’, price $100.00, and set as new from 2024-01-01.
Update the price of Sprite Stasis Ball 55 cm to $24.50 and set its quantity to 50.
Add two products, “Abominable Hoodie” and “Samsung Smart TV”, with respective prices $99.99 and
$50.00, and then start the process of adding a new customer.

Reddit

Create a new forum called “Funny Stuff” with the title “Memes and LOLs”, description “A place for sharing
and discussing funny memes and LOLs”, and sidebar “Memes of the day”.
Find a webpage related to intraday trading strategies on the wallstreetbets forum.
Find and participate in a discussion on the wallstreetbets forum about intraday trading strategy, specifically
on a post titled “Swings and roundabouts”.
Change my profile settings to use Deutsch as the language and Africa/Accra as the time zone, and then view
the search results for “r/art”.

Maps

Get walking directions from Logan Street, Pittsburgh, PA to Carnegie Mellon University on OpenStreetMap.
Get the cycling directions from Brooklyn to Manhattan.
Find the driving directions from TLC Medical Transportation Services in Syracuse to Times Square in
Manhattan.

Gitlab

Create a new project named ’My Blog Post Project’ and add an Apache License 2.0 file.
Create a new project, add a LICENSE file with Apache License 2.0, and approve the “Add verification
functions” merge request.
Search for a README.md file within the “My New Project” project and verify its contents.
Edit the issue “Link to WCAG 2.1 instead of 2.0?” in the First Contributions project on GitLab by updating
its title and description to point to WCAG 2.1 guidelines instead of 2.0 guidelines.
Investigate the node-http-proxy project’s issue #992 regarding connection headers and determine its relevance
to the Byte Blaze project.
Investigate and comment on the “Outdated dependencies” issue in the “Byte BlazeByte BlazeByte Blaze /
accessible-html-content-patterns” project.

Table 7: Some Example demonstrations obtained from NNetnav-6k. We note that these instructions
are hierarchical, refer to concrete features and entities and plausible by design.
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